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Abstract. Examples of the construction of Hamiltonian structures for dynamical systems in
field theory (including one reputedly non-Hamiltonian problem) without using Lagrangians, are
presented. The recently developed method used requires the knowledge of one constant of
motion of the system under consideration and one solution of the symmetry equation.

1. Introduction

Hamiltonian theories have been widely used in almost all areas of physics. The
usual approach consists of constructing the momenta (canonically conjugate to the
coordinates) and the Hamiltonian starting from a Lagrangian formulation of the system under
consideration. Nevertheless, there has been increasing interest in studying non-standard
procedures to produce Hamiltonian structures starting from the equations of motion only,
without using a Lagrangian [1–9]. These approaches usually deal with systems which are
naturally described in terms of non-canonical variables and the Hamiltonian formulation
is consequently written using non-canonical Poisson matrices, which in many cases are
singular. Due to the lack of a general procedure to generate Hamiltonian structures from
scratch, in most instances the results have been obtained by extremely inspired guesswork.

The purpose of this paper is to present examples of the application of a newly devised
method [10, 11] which constitutes ageneral techniquefor the construction of Hamiltonian
structures for dynamical systems. We discuss systems described by nonlinear equations in
field theory and also some linear equations such as the time-dependent Schrödinger equations
and the heat equation, which according to the usual belief, is clearly non-Hamiltonian [5].

In section 2 we give a brief outline of the method, the rest of the paper is devoted to
the construction of the examples.

2. Brief outline of the method

In this section we partially summarize the results of [10]. We use classical mechanical
notation nevertheless, the results may be easily applied to field theory as well, as we will
see at the end of this section.

Consider a dynamical system defined by equations which have been cast in first-order
form,

dxa

dt
= f a(xb) a, b = 1, . . . , N. (1)

0305-4470/97/045077+08$19.50c© 1997 IOP Publishing Ltd 5077



5078 A Gomberoff and S A Hojman

A Hamiltonian structure for it consists of an antisymmetric matrix,J ab(xc) and a
HamiltonianH(xc) such thatJ ab is the Poisson bracket for the variablesxa andxb (which
are non-canonical in general) andH is the Hamiltonian for system (1). In addition to its
antisymmetry, the matrixJ ab is required to satisfy the Jacobi identity and to reproduce, in
conjunction with the HamiltonianH , the dynamical equations (1), i.e.

J ab,dJ
dc + J bc,dJ da + J ca,dJ db ≡ 0 (2)

and,

J ab
∂H

∂xb
= f a. (3)

It has been proved [10] that one solution to the problem of finding a Hamiltonian
structure for a given dynamical system is provided by one constant of motion which may
be used as the HamiltonianH , and a symmetry vectorηa which allows the construction of
a Poisson matrixJ ab. The constant of motion and the symmetry vector satisfy,

LfH = 0 (4)

(∂t + Lf )ηa = 0 (5)

respectively, whereLf is the Lie derivative alongf (for a definition, see [12], for instance).
In addition, it is required that the deformationK of H alongηa,

K ≡ ∂H

∂xa
ηa = LηH (6)

is non-vanishing. The Poisson matrixJ ab is constructed as the antisymmetrized product of
the flow vectorf a and the ‘normalized’ symmetry vectorηb/K,

J ab = 1

K
(f aηb − f bηa). (7)

The Poisson matrix so constructed has rank 2 and it is, therefore, singular in many
instances. Adding together two Poisson matrices constructed according to (7) will not
increase its rank. It will just redefine the symmetry vector used to construct it. One method
to increase the rank of such a Poisson matrix is presented in [10].

Let us now deal with systems with infinitely many degrees of freedom defined by
some fieldφ(x, t), wherex denotes the coordinates of a point in space. The dynamical
equation (1) is now,

φ̇(x, t) = F [φ, x] (8)

whereF is a functional ofφ for every pointx in space. All the above discussion remains
valid replacingxa by φ(x), tensorsT ab...c(xa) by functionals2 which depend on some
spatial coordinates,2[φ, x, y, . . . , z] and partial derivatives∂/∂xa by functional derivatives
δ/δφ(x). Details are given in [3].

3. The heat equation

Let us consider the heat equation,

ut = uxx. (9)

It is easy to see that

η(x) = 1 (10)

is a symmetry transformation for it, whereε is any real number.
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If we assume periodic boundary conditions inx ∈ [−a/2, a/2] then the quantity

H =
∫ a/2

−a/2
u dx (11)

is conserved.
The deformation ofH alongη is given by

LηH =
∫ a/2

−a/2
dx

δH

δu(x)
η(x) = 1

∫ a/2

−a/2
dx = 1a (12)

where all the integrals are taken from−a/2 to a/2.
We can now construct a Poisson matrix associated with the Hamiltonian (11) for

equation (9),

J (x, y) = uxx(x)− uyy(y)
a

. (13)

Let us explicitly show thatJ ab together withH provide a Hamiltonian formulation for
the heat equation. In fact,

[u(x),H ] =
∫ a/2

−a/2
dy J (x, y)

δH

δu(y)

= 1

a
uxx(x)

∫ a/2

−a/2
dy − 1

a

∫ a/2

−a/2
uyy(y) dy

= uxx(x).
So we see that,

u̇ = [u,H ] (14)

as required. It is worth noting that according to folk tradition, this equation cannot be
endowed with a Hamiltonian structure. In Salmon’s words [5]: ‘By anyone’s definition,
(0.1) is non-Hamiltonian’. In his paper, (0.1) is the heat equation subject to periodic
boundary conditions.

4. Time-dependent Schr̈odinger equations

Consider the following equations of motion

ψt = i(ψxx + V (x, t)ψ) ≡ f (15)

and its complex conjugate

ψ∗t = −i(ψ∗xx + V (x, t)ψ∗) ≡ f ∗. (16)

Note that we discuss the case of a time-dependent potential. We use one-dimensional
notation for simplicity only, our results hold irrespective of the dimensionality of space.

It is a straightforward matter to realize that multiplication of the variablesψ andψ∗

by two different constants,(1 + λ) and (1 + µλ) respectively, constitutes a symmetry
transformation for the Schrödinger equations (15) and (16). The infinitesimal version of
this transformation is

η = ψ (17)

and

η∗ = µψ∗. (18)
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The usual probability conservation statement means that

H =
∫
ψ∗(x)ψ(x) dx (19)

is a conserved quantity as it may be easily proved. Its deformationK along the symmetry
vector defined by (17) and (18) may be written in terms of variational derivatives as

K ≡
∫

δH

δψ(x)
η(x) dx +

∫
δH

δψ∗(x)
η∗(x) dx (20)

and a straightforward calculation yields

K = (1+ µ)H 6= 0 (21)

for anyµ such that 1+ µ 6= 0. The Poisson structure is defined by

[ψ(x), ψ(y)] = 1

K
(f (x)η(y)− η(x)f (y)) (22)

[ψ(x), ψ∗(y)] = 1

K
(f (x)η∗(y)− η(x) f ∗(y)) (23)

and

[ψ∗(x), ψ∗(y)] = 1

K
(f ∗(x)η∗(y)− η∗(x)f ∗(y)). (24)

We have thus constructed a family of Poisson structures which depend on the parameterµ for
a given HamiltonianH . Note that despite the time-dependent character of the Schrödinger
equations (15) and (16) the Hamiltonian (19) is conserved, while the usual Hamiltonian
contains the time-dependent potentialV (x, t) and it is not conserved. On the other hand,
our Poisson structures are time dependent. This is, as far as we know, a novel feature for
Poisson matrices, which means that, even in the case of a regular matrix, the Hamiltonian
structure is not derivable from a Lagrangian.

5. The Korteweg–de Vries equation

The equation of motion is

ut = −uux − uxxx ≡ f. (25)

It is not difficult to see that the symmetry transformation for it is given by [10]

η = (−2u− xux + 3t (uux + uxxx)). (26)

In fact, to prove that (26) is a symmetry transformation for the KdV equation, it is enough
to check thatη satisfies the symmetry equation (5) withf defined by (25).

To get a Hamiltonian structure for the KdV equation we need to construct constants of
motion which are non-trivially deformed byη. In [10] the energy

H1 =
∫
u2 dx (27)

was used as a constant of motion to complete the Hamiltonian structure. Note that the
deformationK1 of H1 alongη is non-vanishing

K1 ≡
∫

δH1

δu(x)
η(x) dx = −3H1. (28)

The Poisson structureJ1(x, y) is given by

J1(x, y) = 1

K1
(f (x)η(y)− f (y)η(x)). (29)
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Consider nowH2

H2 =
∫ (
−ux

2

2
+ u3

)
dx (30)

which is also conserved. Its deformationK2 alongη is

K2 ≡
∫

δH2

δu(x)
η(x) dx = −5H2. (31)

The Poisson structureJ2(x, y) is given by

J2(x, y) = 1

K2
(f (x)η(y)− f (y)η(x)). (32)

We have been able to construct two different Hamiltonian structures based on one symmetry
vector η and two conserved quantitiesH1 and H2 as the Hamiltonians of each of the
structures. The Poisson structuresJ1 andJ2 are built as the antisymmetric product of the
evolution vectorf and the symmetry vectorη normalized using the deformationsK1 andK2

of H1 andH2, respectively. Note that a different but closely related scheme exists in which
no normalization of the antisymmetric product is needed provided that the Hamiltonians
− 1

3 logH1 and− 1
5 logH2 are used instead ofH1 andH2 respectively. In this case the

Poisson matrix for both Hamiltonian structures is exactly the same one.
A similar construction may be performed with the rest of the constants of motion which

belong to this family, as they appear, for instance, in [13]. We have then constructed a set of
infinitely many Hamiltonian structures for the KdV based on one symmetry transformation
and different constants of motion. Let us remark that as it was mentioned in section 2, the
matricesJ (x, y) constructed according to (7) have rank 2, hence, there are many Casimir
functions which have vanishing Poisson bracket relations with any other dynamical quantity.
A few words regarding the construction of Casimir functions for Poisson structures such
as these seem in order. Time-independent Casimir functions are, of course, constants of
motion. Consider now a different evolution along another parameter (call its) which is
given in terms of the symmetry vectorηa. In other words, consider

dxa

ds
= ηa(xb) a, b = 1, . . . , N. (33)

Deformation of constants of the motion alongηa may be viewed as the evolution of such
constants in the parameters. A Casimir function is such that its evolutions (both in time
and in thes parameter) vanish. So, the construction of Casimir functions may be viewed as
the search of entities which are simultaneously constant for both the time ands evolutions.

To illustrate this, take for instance equations (28) and (31) and rewrite them as

dH1

ds
= −3H1 (34)

and

dH2

ds
= −5H2 (35)

solve them and eliminate the parameters to get thatH1
1/3H2

−1/5 is a Casimir function for
both of the Poisson matrices (29) and (32). Similarly, one can get Casimir functions for
other Poisson matrices.
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6. The Burgers equation

Consider the Burgers equation,

ut = uxx + 2uux ≡ f (36)

x being in [−a/2, a/2]. It is straightforward to prove that

H1 =
∫ a/2

−a/2
dx u(x) (37)

H2 =
∫ a/2

−a/2
dx exp

[ ∫ x

−a/2
u(y) dy

]
(38)

are conserved quantities for it, if we assume that the field vanishes at the boundary±a/2.
A symmetry transformation for equation (36) is given by

η(x) = u(x) exp

[
−
∫ x

−a/2
u

]
. (39)

To see this, it is enough to show that

Lf η =
∫ a/2

−a/2
dy

(
δf (x)

δu(y)
η(y)− δη(x)

δu(y)
f (y)

)
= 0.

In fact, ∫ a/2

−a/2
dy
δf (x)

δu(y)
η(y) =

∫ a/2

−a/2
dy
δη(x)

δu(y)
f (y)

= exp

(∫ x

−a/2
u(y) dy

)
(uxx + uux − u3).

The deformation ofH1 alongη does not vanish,

K1 = LηH1 =
∫ a/2

−a/2
dx

δH1

δu(x)
η(x)

=
∫ a/2

−a/2
dx u(x)exp

(
−
∫ x

−a/2
dw u(w)

)
= 1− exp(−H1).

It may be proved that the deformation ofH2 alongη is also non-vanishing,

K2 = LηH2 =
∫ a/2

−a/2
dx

δH2

δu(x)
η(x)

=
∫ a/2

−a/2
dz exp

(∫ z

−a/2

)
u(z)

[ ∫ a/2

z

dx exp

(∫ x

−a/2
dw u(w)

)]
= H2− a.

Therefore, we may construct Hamiltonian theories for the Burgers equation using eitherH1

or H2 as Hamiltonians. The appropriate Poisson matrices are

J1(x, y) = f (x)η(y)− f (y)η(x)
K1

(40)

and

J2(x, y) = f (x)η(y)− f (y)η(x)
K2

(41)



Non-standard construction of Hamiltonian structures 5083

respectively.
It is easy to check, for example, that,

C = eH1 − 1

H2− a (42)

is a Casimir for both of the Poisson brackets defined by (40) and (41), where we have used
the approach described at the end of the preceding section.

7. The Harry–Dym equation

The Harry–Dym equation is

ut = (u−1/2)xxx ≡ f (43)

wherex ∈ [−a/2, a/2]. If we assume periodic boundary conditions,H1 andH2

H1 =
∫ a/2

−a/2
u dx (44)

H2 =
∫ a/2

−a/2
u1/2 dx (45)

are conserved quantities. Note thata may be set equal to∞.
Let us define the vector field

ξ(x) = Au− Bxux (46)

whereA andB are real constants. Let us now compute the Lie derivative of it alongf ,

Lf ξ = 3( 1
2A+ B)(u−1/2)xxx = 3( 1

2A+ B)f. (47)

Therefore,η

η = −3t ( 1
2A+ B)f + ξ (48)

is a symmetry transformation and can be used to construct a Hamiltonian theory provided
it deforms some Hamiltonian non-trivially.

This is exactly the case forH1 andH2. In fact,

K1 ≡ LηH1 = (A+ B)H1 (49)

K2 ≡ LηH2 =
(
A

2
+ B

)
H2 (50)

so we have one family of Poisson matrices associated withH1 and another one associated
with H2. They are

J1(x, y) = (u−1/2)xxx(Au(y)− Byuy)− (u−1/2)yyy(Au(x)− Bxux)
K1

(51)

and

J2(x, y) = (u−1/2)xxx(Au(y)− Byuy)− (u−1/2)yyy(Au(x)− Bxux)
K2

(52)

respectively. Of course, we must be careful to chooseA andB in such a way that either
K1 or K2 (or both) is non-vanishing.
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8. Conclusions

We have constructed Hamiltonian structures, without using Lagrangians, for several linear
and nonlinear systems of partial differential equations (field theory) based on a recently
devised method [10, 11], which needs only of the knowledge of a constant of motion and
a solution of the symmetry equation. The examples include the heat equation which has,
up to now, been considered to be non-Hamiltonian [5]. The structures found are singular
in the sense that there exist Casimir functions (which have vanishing Poisson bracket with
any dynamical variable). This feature is present in many other Hamiltonian theories, and
it is sometimes unavoidable (as it is in the case of gauge and constrained systems), and it
also appears in Hamiltonian descriptions of some fluids. We should stress that being able
to produce a Hamiltonian structure (albeit singular) for a system of differential equations
constitutes progress with respect to the situation of having no Hamiltonian structure at all.
More examples will be discussed in forthcoming articles.
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